
PERFORMANCE ANALYSIS AND COMPARISON OF MPI, OPENMP AND HYBRID NPB-MZ 1

Performance Analysis and Comparison of

MPI, OpenMP and Hybrid NPB -MZ
Héctor J. Machín Machín

Abstract—Chip multiprocessors (CMP) are w idely used for high performance computing and are being configured in a

hierarchical manner to compose a node in a parallel system. CMP clusters provide a natural programming paradigm for hybrid

programs. Can current hybrid parallel programming paradigms such as hybrid MPI/OpenMP eff iciently exploit the potential

offered by such CMP clusters? In this research, w ith increasing the number of processors and problem sizes, we systematically

analyze and compare the performance of MPI, OpenMP and hybrid NAS Parallel Benchmark Mult i–Zone (NPB–MZ) on tw o

supercomputers: DataStar p655 at San Diego Supercomputer Center (SDSC) and Hydra at Texas A&M Supercomputing

Facilities to address the question. We also upload the performance data of NPB-MZ to Prophesy database and use Prophesy

system to model the performance online.

Index Terms—Performance analysis, MPI (Message Passing Interface), OpenMP (Open Multi-Processing), NPB-MZ (NAS

Parallel Benchmark Multi-Zone), MCM (Multi-Chip-Module), DCM (Dual-Chip-Module).

——————————  ——————————

1 INTRODUCTION

hip multiprocessors (CMP) are widely used for high
performance computing and are being configured in
a hierarchical manner to compose a node in a parallel

system. CMP clusters provide a natural programming
paradigm for hybrid programs. Through this paper we
are going to use NAS Parallel Benchmarks with Multi-
Zone executed on two supercomputer systems (DataStar
p655 and Hydra) to find out if their potentials of the CMP
clusters can be exploit by hybrid parallel programming
paradigms such as hybrid MPI/OpenMP.

The remainder of this paper is organized as follows.
Section 2 describes two supercomputing systems we
used. Section 3 depicts NAS parallel benchmarks with
multi-zone (NPB-MZ). Section 4 analyzes the perfor-
mance of the NPB-MZ on two CMP clusters. Section 5
discusses processor partitioning. Section 6 presents
performance modeling results, and concludes the pa-
per in Section 7.

2 PLATFORMS

2.1 Datastar p655

The San Diego Supercomputer Center DataStar p655 [1] is
primarily intended to run applications of very high levels
of parallelism or concurrency, especially thosee with high
parallel I/O requirements.

DataStar has 272 8-way P655+ compute nodes --
176 nodes with 1.5-GHz Power4+ CPUs and 16 GB of
memory, and 96 with 1.7 GHz Power4+ CPUs and 32 GB
of memory. The nodes are connected via IBM's high-

Perfor mance Anal ysi s and C omparison of MPI, OpenM P and H ybr i d N PB-MZ

————————————————

 Héctor Machín is with the REU Summer 2008 at Texas A&M CS
Department. Email: hjmachin@cs.tamu.edu.

Fig. 1. DataStar p655

Table 1. DataStar p655 specif ications

C

2 PERFORMANCE ANALYSIS AND COMPARISON OF MPI, OPENMP AND HYBRID NPB-MZ

speed Federation switch and have access to 130 TB of
GPFS [1].

 2.1.1 Power4 Chip

The functional unit of the POWER4 consists of two 64-bit
implementations of the PowerPC AS Architecture. The

POWER4 has an L2 unified cache, divided into three
equal parts. Each has its own independent L2 controller
which can feed 32 bytes of data per cycle. The Core Inter-
face Unit (CIU) connects each L2 controller to either the
data cache or instruction cache in either of the two pro-
cessors. The Non-Cacheable (NC) Unit is responsible for
handling instruction serializing functions and performing
any noncacheable operations in the storage topology.
There is an L3 cache controller, but the actual memory is
off-chip. The GX bus controller controls I/O device com-
munications, and there are two 4-byte wide GX buses,
one incoming and the other outgoing. The Fabric Control-
ler is the master controller for the network of buses, con-
trolling communications for both L1/L2 controllers, com-
munications between POWER4 chips {4-way, 8-way, 16-
way, 32-way} and POWER4 MCM’s [1].

2.2 Hydra

The Texas A&M Hydra is a high-performance "IBM clus-
ter 1600", based on IBM's Power5+ processor. The cluster
consists of 40 p5-575 nodes, each having 16 Power5+ pro-
cessors running at 1.9GHz and 32 GBytes of DDR2
DRAM. A p5-575 node, is a high-performance, Shared-
Memory multi-processor (SMP), running the 64-bit ver-
sion of AIX 5L (5.3) as a single system image [2].

2.2.1 Power5 Chip

POWER5 is a microprocessor developed by IBM. It is an
improved variant of the highly successful POWER4. The
principal changes are support for Simultaneous multith-
reading (SMT) and an on-die memory controller. Each
CPU supports 2 threads; since it is a multicore chip, with
2 physical CPUs, each chip supports 4 logical threads. The
POWER5 can be packaged in a DCM (dual chip module),
with one dual core chip per module, or an MCM with 4
dual core chips per module. POWER5+ (presented on 3Q
2005) packages in QCM, 2 dual core chips [2].

Fig. 2. Pow er4 Chip

Fig. 3. Pow er4 MCM (Multi-Chip-Module), a p655 node

Fig. 4. Hydra

Table 2. Hydra specif ications

http://en.wikipedia.org/wiki/Microprocessor
http://en.wikipedia.org/wiki/IBM
http://en.wikipedia.org/wiki/POWER4
http://en.wikipedia.org/wiki/Simultaneous_multithreading
http://en.wikipedia.org/wiki/Simultaneous_multithreading
http://en.wikipedia.org/wiki/Semiconductor-die_cutting
http://en.wikipedia.org/wiki/Memory_controller
http://en.wikipedia.org/wiki/Multicore
http://en.wikipedia.org/wiki/Multi-Chip_Module

PERFORMANCE ANALYSIS AND COMPARISON OF MPI, OPENMP AND HYBRID NPB-MZ

 3

3 NAS PARALLEL BENCHMARKS – MULTI ZONE

(NPB – MZ)

3.1 Introduction

For having a better understanding of these benchmarks
we are going to provide a background in the following
steps:

 Message Passing Interface (MPI)
 OpenMP
 Nas Parallel Benchmaks (NPB)

After this background we intend to go in more detail
about NBP-MZ.

3.1.1 Message Passing Interface (MPI)

In the MPI programming model, a computation compris-
es one or more processes that communicate by calling
library routines to send and receive messages to other
processes. In most MPI implementations, a fixed set of

processes is created at program initialization, and one
process is created per processor. However, these
processes may execute different programs. Hence, the
MPI programming model is sometimes referred to as
multiple program multiple data (MPMD) to distinguish it
from the SPMD model in which every processor ex-
ecutes the same program [3].

3.1.2 OpenMP

OpenMP is an implementation of multithreading, a me-
thod of parallelization whereby the master "thread" (a
series of instructions executed consecutively) "forks" a
specified number of slave "threads" and a task is divided
among them. The threads then run concurrently, with the
runtime environment allocating threads to different pro-
cessors.

By default, each thread executes the parallelized
section of code independently. "Work-sharing constructs"
can be used to divide a task among the threads so that
each thread executes its allocated part of the code. Both
Task parallelism and Data parallelism can be achieved
using OpenMP in this way [4].

3.1.3 NAS Parallel Benchmarks (NPB)

NAS Parallel Benchmars has been developed for the per-

formance evaluation of highly parallel supercomputers.

These benchmarks consist of five parallel kernels and

three simulated application benchmarks. Together they

mimic the computation and data movement characteris-

tics of large scale computational fluid dynamics (CFD)

application.

The principal distinguishing feature of these

benchmarks is their "pencil and paper" specification - all

details of these benchmarks are specified only algorithmi-

cally. In this way many of the difficulties associated with

conventional benchmarking approaches on highly paral-

lel systems are avoided [5].

NPB are well-known problems for testing the ca-

pabilities of parallel computers and parallelization tools.

They exhibit mostly fine-grain exploitable parallelism and

are almost all iterative, requiring multiple data exchanges

between processes within each iteration. However, many

important scientific problems feature several levels of

parallelism, and this property is not reflected in NPB. To

remedy this deficiency the NPB Multi-Zone (NPB-MZ)

versions were created [6,7].

3.2 NPB - MZ

To mimic NPB applications, the NPB Multi-Zone (NPB-

MZ) versions were created, which contain three families

of multi-zone benchmarks, derived from the NPB. These

multi-zone benchmarks stress the need to exploit both

levels of parallelism for efficiency and to balance the

computational load [6].

Problem sizes and verification values are given

for benchmark classes S, W, A, B, C, and D.

Fig. 6. A 16-w ay p5-575 node (8 DCMs w ith 2 Pow er5+ cores per
DCM)

Fig. 5. Pow er5 Chip

http://en.wikipedia.org/wiki/Multithreading
http://en.wikipedia.org/wiki/Runtime_environment
http://en.wikipedia.org/wiki/Task_parallelism
http://en.wikipedia.org/wiki/Data_parallelism

4 PERFORMANCE ANALYSIS AND COMPARISON OF MPI, OPENMP AND HYBRID NPB-MZ

Table 3. Aggregate problem size and the number of zones for each
problem class. Gx, Gy, and Gz are aggregate spatial dimensions.

The application benchmarks Lower-Upper Symmetric

Gauss-Seidel (LU), Scalar Penta-diagonal(SP), and Block

Tri-diagonal (BT) solve discretized versions of the un-

steady, compressible Navier-Stokes equations in three

spatial dimensions. Each operates on a structured discre-

tization mesh that is a logical cube. In realistic applica-

tions, however, a single such mesh is often not sufficient

to describe a complex domain, and multiple meshes or

zones are used to cover it [6].

3.2.1 Serial Implementation

The serial implementation of NPB – MZ starts with the

original single-zone problem of LU, SP, and BT being

subdivided into multiple zones. Then solutions for each

zone are then initialized. The benchmarking loop starts

with a time step loop which contains a procedure to ex-

change boundary values of different zones. Then discrete

partial differential equation solvers LU, SP, and BT are

used for obtaining solution updates within each zone in

the new LU-MZ, SP-MZ, and BT-MZ, respectively. The

solving stage includes procedures for performing forcing

term (right-hand-side) calculations and the Lower-Upper

(for LU-MZ) or Alternative Directional Implicit (for SPMZ

and BT-MZ) algorithm. Finally solution is then verified

for all zones for a given problem class.

Fig 7. Schematic f low graph of the multizone benchmarks in sequen-
tial execution. Loops (back arrows) are annotated w ith their induction

variable.

3.2.2 Hybrid Implementation (MPI + OpenMP)

As clusters of symmetric multiprocessor machines have

become popular, more and more applications take advan-

tage of the hardware architecture by using the hybrid

programming model which uses MPI for communication

between symmetric multi-processor nodes and OpenMP

for parallelization within one node.

The MPI+OpenMP implementation of the multi-

zone benchmarks starts by defining the number of MPI

processes at compilation time in order to avoid dynamic

memory allocation. Then each process is first assigned

with a group of zones and a given number of OpenMP

threads. There is no dynamic load adjustment at runtime.

As in the sequential version, solutions for the zones as-

signed to each process are then initialized, followed by

the time step loop. There is no communication during the

LU, SP, or BT solving stage. Finnally the last stage (verifi-

cation) performs a reduction of solutions and residues

from all zones for a given problem class [7].

Fig 8. Coarse grained parallelization w ith zone groups for the multi-
zone benchmarks using MPI and OpenMP.

4 SCALABILITY ANALYSIS

Through the quest of comparing the performance of MPI,
OpenMP and the Hybrid NPB-MZ over CMP clusters, we
developed a scalability analysis wich consists:

 Compiling all benchmarks from 1 to 1024 proces-
sors (DataStar p655) and from 1 to 128 (Hy-
dra).

 Running jobs for MPI, OpenMP and Hybrid
NPB-MZ increasing each run the number of
processors with a fixed problem size.

 Running jobs for MPI, OpenMP and Hybrid
NPB-MZ increasing problem size fixed num-
ber of processors.

 Collecting the execution time from the output
files and make a detailed comparison for each
programming paradigm.

4.1 Description
Each benchmark was compiled for problem classes: A, B,
C, D and E. Then they where runned for MPI, using the
Load Level (LL) submit file, and the collected execution
time results until now are shown in table 4. The results
that are not shown in this table are still waiting in queues
in both DataStarp655 and Hydra.

PERFORMANCE ANALYSIS AND COMPARISON OF MPI, OPENMP AND HYBRID NPB-MZ

 5

 Theses tables 4, 5, 6, 7 and 8 show all the results
collected until now. The Xs in a specific table space
means that the program cannot run for the specific prob-
lem class and number of processors. For example the
benchmark LU-MZ can only run for up to 16 processors
for any problem class. Problem classes D, and E restricts
where the number of processors should begin, for D is 8
and for E is 128. But like we mentioned LU-MZ can only
run up to 16 processors it is needless to mention this
benchmark in the table for problem class E since it would
not have any collectable results. Also it is important to
remind the reader that the limit of processor number in
Hydra is 128 processors.

Table 4. MPI Run Results Class A

Table 5. MPI Run Results Class B

Table 6. MPI Run Results Class C

Table 7. MPI Run Results Class D

Table 8. MPI Run Results Class E

Fig 9. Graph for speedup for benchmark SP-MZ, for problem classes
 A-C, from 1 up to 256 processors for MPI code.

Fig 8. Graph for speedup for benchmark BT-MZ, for problem classes

 A-C, from 1 up to 256 processors for MPI code.

Fig 10. Graph for speedup for benchmark LU-MZ, for problem classes
 A-C, from 1 up to 16 processors for MPI code.

6 PERFORMANCE ANALYSIS AND COMPARISON OF MPI, OPENMP AND HYBRID NPB-MZ

 The figures 8, 9 and 10 show the speed-up for
MPI code for problem classes A, B and C. It is notably
show that the speed-up of Hydra exceeds the speed-up of
DataStar. This implicitly shows that the execution time
goes down quicklier in Hydra than in DataStar p655. The
reason for this is the difference in CPU type, Hydra is a
Power5 where DataStar p655 is a Power4. Figures 8 and 9
axis where put on logarithm base to show all points with
equal distance. The figure 8 also shows at what point the
speedup does not increase more.

 The Tables 9, 10 and 11 show the execution time
results for OpenMP runs. To begin the comparison be-

tween the programming paradigms, we made a direct
comparison between the execution time of MPI and
OpenMP. The ratio from MPI to OpenMP is the execu-
tion time of MPI over the execution time of OpenMP. The
figures 11, 12 and 13 show us that for most of the cases
MPI is faster than OpenMP, that’s why the ratio in most
cases is below 1. Before making more experiments we
can suggest another question, is Message Passing pro-
gramming model more efficient than Shared Memory?

Table 9. OpenMP Run Results Class A

Table 10. OpenMP Run Results Class B

Table 11. OpenMP Run Results Class C

Fig 11. Graph for ratio MPI to OpenMP, benchmark BT-MZ.

Fig 12. Graph for ratio MPI to OpenMP, benchmark SP-MZ.

Fig 13. Graph for ratio MPI to OpenMP, benchmark LU-MZ.

Fig 14. Graph for speed-up for benchmark BT-MZ, for problem classes A,

B and C, from 1 up to 8 processors for OpenMP code.

PERFORMANCE ANALYSIS AND COMPARISON OF MPI, OPENMP AND HYBRID NPB-MZ

 7

OpenMP for problem classes A, B and C. This

states the as the speed-up graphs for MPI that Hydra is
faster than DataStar p655. OpenMP is code is runned for
this problem classes because it can only run on one node
so the maximum number of processors is 8 for DataStar
p655 and 16 for Hydra.

Tables 12, 13, 14, 15 and 16 show the execution
results for Hybrid (MPI/OpenMP) runs. To follow up the
comparison of the programming paradigms we now
compare the Hybrid with MPI. In figures 17 and 18 shows
the ratio from MPIto Hybrid. This is the execution time
of MPI over the execution time of Hybrid. The figures
show explicitly that Hybrid in most cases is faster than
MPI. It is very important to remark some results that
states that Hybrid is two and three times faster than MPI.
There are no speed-up graphs for Hybrid code because it
does not have a sequential basis execution time to devel-
op it.

Table 12. Hybrid Run Results Class A

Table 13. Hybrid Run Results Class B

Table 14. Hybrid Run Results Class C

Table 15. Hybrid Run Results Class D

Table 16. Hybrid Run Results Class E

Fig 16. Graph for speed-up for benchmark LU-MZ, for all problem classes
A, B and C from 1 up to 8 processors for OpenMP code.

Fig 15. Graph for speed-up for benchmark SP-MZ, for problem classes A,

B and C, from 1 up to 8 processors for OpenMP code.

8 PERFORMANCE ANALYSIS AND COMPARISON OF MPI, OPENMP AND HYBRID NPB-MZ

5 PROCESSOR PARTITIONING

Processor partitioning [8] is developed by executing dif-
ferent runs of MPI code with a fixed number of proces-
sors, but varying the number of nodes and task per node.
This way we can find what is the most efficient configura-
tion for running a parallel program.

The first analysis is done on DataStar p655 for problem

classes B and C and benchmarks BT-MZ and SP-MZ. The
following tables show the results for these runs.

Fig 18. Graph for ratio MPI to Hybrid, benchmark SP-MZ.

Table 17. DataStar p655, BT-MZ, Class B results w ith 8 processors

Table 18. DataStar p655, BT-MZ, Class B results w ith 32 proces-

sors

Table 19. DataStar p655, BT-MZ, Class B results w ith 64 proces-
sors

Table 20. DataStar p655, BT-MZ, Class C results with 8 processors

Table 21. DataStar p655, BT-MZ, Class C results with 32 proces-
sors

Table 22. DataStar p655, BT-MZ, Class C results with 64 proces-
sors

Fig 17. Graph for ratio MPI to Hybrid, benchmark BT-MZ.

PERFORMANCE ANALYSIS AND COMPARISON OF MPI, OPENMP AND HYBRID NPB-MZ

 9

The pattern of these results shows that using less pro-

cessors per node as possible is the most efficient configu-
ration. Next we will show the results from the same
analysis on Hydra.

Table 29. Hydra, BT-MZ, Class B results with 16 processors

Table 30. Hydra, BT-MZ, Class B results with 32 processors

Table 31. Hydra, BT-MZ, Class B results with 64 processors

Table 32. Hydra, BT-MZ, Class C results with 8 processors

Table 33. Hydra, BT-MZ, Class C results with 32 processors

Table 34. Hydra, BT-MZ, Class C results with 64 processors

Table 23. DataStar p655, SP-MZ, Class B results with 8 processors

Table 24. DataStar p655, SP-MZ, Class B results with 32 processors

Table 25. DataStar p655, SP-MZ, Class B results with 64 processors

Table 26. DataStar p655, SP-MZ, Class C results with 8 processors

Table 27. DataStar p655, SP-MZ, Class C results with 32 processors

Table 28. DataStar p655, SP-MZ, Class C results with 64 processors

10 PERFORMANCE ANALYSIS AND COMPARISON OF MPI, OPENMP AND HYBRID NPB-MZ

 These results are not consistent and do not show
a clear pattern. The reason for this is that the nodes in
Hydra are shared, meaning that if your application is not
using all processors per node another application can take
advantage of the other processors in the nodes sharing
the memory of the node too. This causes an unclear result
for the execution time. Unlike Hydra, DataStar has dedi-
cated nodes so its results are more precise.

6 PROHESY PERFORMANCE MODELING

Prophesy [9] is an infrastructure for analyzing and model-
ing the performance of parallel and distributed applica-
tions. The core component of Prophesy is a relational da-
tabase that allows for the recording of performance data,
system features and application details. As a result, a
Prophesy system can be used to develop models based
upon significant data, identify the most efficient imple-
mentation of a given function based upon the given sys-
tem configuration, explore the various trends implicated
by the significant data, and predict the performance on a
different system.

The Prophesy framework consists of three major
components: data collection, data analysis, and three cen-
tral databases.

The data collection component focuses on the au-
tomatic instrumentation of codes at the level of basic
blocks, procedures, or functions. The default mode con-
sists of instrumenting the entire code at the level of basic
loops and procedures. A user can specify that the code be
instrumented at a finer granularity than that of loops or
identify the particular events to be instrumented. The
resultant performance data is automatically placed in the
performance database and is used by the data analysis
component to produce an analytical performance model
with coefficients, at the granularity specified by the user.
The models are developed based upon performance data
from the performance database, model templates from
the template database, and system characteristics from
the systems database. The interface uses web technology
to allow users to access Prophesy from anywhere. An ap-
plication goes through three stages (instrumentation of
the application, performance data collection of many
runs, and model development using optimization tech-
niques) to generate an analytical performance model.
 Prophesy allows for the development of linear as
well as nonlinear models. These models, when combined
with data from the system database, can be used by the
prediction engine to predict the performance on a differ-

Table 35. Hydra, SP-MZ, Class B results with 16 processors

Table 36. Hydra, SP-MZ, Class B results with 32 processors

Table 37. Hydra, SP-MZ, Class B results with 64 processors

Table 38. Hydra, SP-MZ, Class C results w ith 16 processors

Table 39. Hydra, SP-MZ, Class C results w ith 32 processors

Table 40. Hydra, SP-MZ, Class C results w ith 64 processors

Fig 19. Prophesy framew ork diagram.

PERFORMANCE ANALYSIS AND COMPARISON OF MPI, OPENMP AND HYBRID NPB-MZ

 11

ent compute platform. These models can then be used to
give insight into which machine may perform the best for
the given implementation of the kernel and what happens
when one changes different features of the system [10].

 For this research we uploaded the performance
results into the Prophesy database and used the Prophesy
predictor modeler for predict the performance as shown
in figures 20, 21 and 22.

7 CONCLUSION

Through this research is shown that MPI overperfoms
OpenMP for most cases. Also is shown that Hybrid
overperforms MPI performance. It can be concluded that
Hybrid programming paradigms such as the combination
of MPI and OpenMP, MPI for inter node communication
and OpenMP for inner node communication, can effi-
ciently exploit the potential offered by CMP clusters.

For future work I would work on a hardware-level per-
formance analysis with hpmcount for deeper understand-
ing of these results. Also apply this kind of performance
analysis method on other HPC and scientific computing
applications.

Acknowledgement

I want to thank my mentors Dr. Valerie E. Taylor and
Dr. Xingfu Wu for their support and all their help
through the summer of 2008. This research was sup-
ported by Texas A&M Computer Science REU program
and the DMP program for the summer of 2008.

REFERENCES

[1] SDSC DataStar, http://www.sdsc.edu/user_services/datastar/

[2] TAMU Hydra, “TAMU Supercomputing Facility,”

http://sc.tamu.edu/systems/hydra/hardware.shtml

[3] F. Ian, "Designing and Building Parallel Programs,"

http://www-unix.mcs.anl.gov/dbpp/ .

[4] OpenMP, http://openmp.org/.

[5] D. Bailey, E. Barszcz, J. Barton, D. Browning, R. Carter, L. Da-

gum, R. Fatoohi, S . Fineberg, P. Fredrickson, T. Lasinski, R.

Schreiber, H. S imon, V. Venkatakrishnan and S . Weeratunga,

“The NAS Parallel Benchmarks,” RNR Technical Report, RNR-

94-007, March 1994.

[6] R.F. Van der Wijngaart, H. Jin, “NAS Parallel Benchmarks,

Fig 20. Prediction Performance modeler for MPI, problem class E, for

2048 processors on DataStar p655.

Fig 22. Prediction Performance modeler for Hybrid, problem class D, for

2048 processors on DataStar p655.

Fig 21. Prediction Performance modeler for OpenMP, problem class C,

for 16 processors on DataStar p655.

12 PERFORMANCE ANALYSIS AND COMPARISON OF MPI, OPENMP AND HYBRID NPB-MZ

Multi-Zone Versions,” NASA Advanced Supercomputer (NAS)

Division NASA Ames Research Center, NAS Technical Report

NAS-03-010, Moffet Field, CA.

[7] R.F. Van der Wijngaart, H. Jin, “Performance Characteristics of

the Multi-Zone NAS Parallel Benchmarks,” NASA Advanced Su-

percomputer (NAS) Division NASA Ames Research Center, M/S

T27A-1, Moffet Field, CA.

[8] Xingfu Wu and Valerie Taylor, Processor Partitioning: An Expe-

rimental Performance Analysis of Parallel Applications on SMP

Cluster Systems, the 19th International Conference on Parallel and

Distributed Computing and Systems (PDCS 2007), November 19-

21, 2007, Hotel@MIT, Cambridge, MA.

[9] Valerie Taylor, Xingfu Wu, and Rick Stevens, Prophesy: An

Infrastructure for Performance Analysis and Modeling of Paral-

lel and Grid Applications, ACM SIGMETRICS Performance Eval-

uation Review, Volume 30, Issue 4, March 2003. Also see

http://prophesy.cs.tamu.edu.

